हिंदी

Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45° - Mathematics

Advertisements
Advertisements

प्रश्न

Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°

उत्तर

∵ 23 = 90 – 67 & 15 = 90 – 75

∴ sin 67° + cos 75°

= sin (90 – 23)° + cos (90 – 15)°

= cos 23° + sin 15°.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.3 [पृष्ठ १९०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.3 | Q 7 | पृष्ठ १९०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`


Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`


Show that : `sin26^circ/sec64^circ  + cos26^circ/(cosec64^circ) = 1`


Evaluate:

14 sin 30° + 6 cos 60° – 5 tan 45°


Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`


Evaluate:

`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)` 


Prove that:

sin (28° + A) = cos (62° – A)


Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.


If tan θ = cot 37°, then the value of θ is


If sin 3A = cos 6A, then ∠A = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×