Advertisements
Advertisements
प्रश्न
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
उत्तर
∵ 23 = 90 – 67 & 15 = 90 – 75
∴ sin 67° + cos 75°
= sin (90 – 23)° + cos (90 – 15)°
= cos 23° + sin 15°.
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Prove that:
sin (28° + A) = cos (62° – A)
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
The value of cos 1° cos 2° cos 3° ..... cos 180° is
The value of
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
If tan θ = cot 37°, then the value of θ is
If sin 3A = cos 6A, then ∠A = ?