Advertisements
Advertisements
प्रश्न
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
उत्तर
`sin26^circ/sec64^circ + cos26^circ/(cosec64^circ)`
= `sin26^circ/(sec(90^circ - 26^circ)) + cos26^circ/(cosec(90^circ - 26^circ))`
= `sin26^circ/(cosec26^circ) + cos26^circ/sec26^circ`
= sin226° + cos226°
= 1
APPEARS IN
संबंधित प्रश्न
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.