Advertisements
Advertisements
प्रश्न
What is the maximum value of \[\frac{1}{\sec \theta}\]
उत्तर
The maximum value of `1/secθ` is 1 because the maximum value of cosθ is 1 that is `1/ secθ=cosθ `
`1/sec θ=1`
APPEARS IN
संबंधित प्रश्न
Evaluate `(tan 26^@)/(cot 64^@)`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
In the following figure the value of cos ϕ is
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Solve: 2cos2θ + sin θ - 2 = 0.
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If sin 3A = cos 6A, then ∠A = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.
`tan 47^circ/cot 43^circ` = 1