Advertisements
Advertisements
प्रश्न
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
उत्तर
Sin (90° - 3A). cosec 42° = 1
⇒ sin (90° - 3A) = `(1)/("cosec" 42°)`
⇒ cos 3A = `(1)/("cosec" (90° - 48°)`
⇒ cos 3A = `(1)/(sec 48°)`
⇒ cos 3A = cos 48°
⇒ 3A = 48°
⇒ A = 16°.
APPEARS IN
संबंधित प्रश्न
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
`(sin 75^circ)/(cos 15^circ)` = ?
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
If sec A + tan A = x, then sec A = ______.