Advertisements
Advertisements
प्रश्न
The value of
विकल्प
1
− 1
2
−2
उत्तर
We have to find: \[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\]
so
\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\]
= `(sin θ cosec θ tan θ) /(sec θ cos θ tan θ )+cot θ / cot θ `
=` (1 xx tan θ) /(1xx tan θ )+cot θ /cot θ `
=`1+1`
=`2`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use trigonometrical tables to find tangent of 17° 27'
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
The value of tan 72° tan 18° is
The value of tan 1° tan 2° tan 3°…. tan 89° is
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
The value of the expression (cos2 23° – sin2 67°) is positive.