हिंदी

The Value of Cos ( 90 ° − θ ) Sec ( 90 ° − θ ) Tan θ C O S E C ( 90 ° − θ ) Sin ( 90 ° − θ ) Cot ( 90 ° − θ ) + Tan ( 90 ° − θ ) Cot θ - Mathematics

Advertisements
Advertisements

प्रश्न

The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 

विकल्प

  • 1

  • − 1

  •  2

  •  −2

MCQ

उत्तर

We have to find:  \[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

so 

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

= `(sin θ cosec θ tan θ) /(sec θ  cos θ  tan θ )+cot θ / cot θ ` 

=` (1 xx tan θ) /(1xx tan θ )+cot θ /cot θ ` 

=`1+1` 

=`2` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 22 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


Express the following in terms of angles between 0° and 45°:

cos74° + sec67°


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°


Prove that:

`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`


Use trigonometrical tables to find tangent of 17° 27'


Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`


If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.


If A + B = 90° and \[\cos B = \frac{3}{5}\]  what is the value of sin A? 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\] 


If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\] 


tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to 


Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°


Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.


The value of tan 72° tan 18° is


The value of tan 1° tan 2° tan 3°…. tan 89° is


2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×