Advertisements
Advertisements
प्रश्न
The value of tan 1° tan 2° tan 3°…. tan 89° is
विकल्प
0
1
2
`sqrt(3)/2`
उत्तर
1
Explanation;
Hint:
tan 1°. tan 2°. tan 3° …….. tan 89°
= tan (90° – 89°). tan (90° – 88°) .tan (90° – 87°) …….. tan 45°. tan (89°)
= cot 89°. cot 88°. cot 87°. ……. tan 45° …….. tan 87°. tan 88°. tan 89°
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Solve.
`sec75/(cosec15)`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Evaluate:
tan(55° - A) - cot(35° + A)
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
If cot( 90 – A ) = 1, then ∠A = ?
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.