Advertisements
Advertisements
प्रश्न
The value of tan 1° tan 2° tan 3°…. tan 89° is
पर्याय
0
1
2
`sqrt(3)/2`
उत्तर
1
Explanation;
Hint:
tan 1°. tan 2°. tan 3° …….. tan 89°
= tan (90° – 89°). tan (90° – 88°) .tan (90° – 87°) …….. tan 45°. tan (89°)
= cot 89°. cot 88°. cot 87°. ……. tan 45° …….. tan 87°. tan 88°. tan 89°
= 1
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Evaluate `(tan 26^@)/(cot 64^@)`
Solve.
`cos22/sin68`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate.
cos225° + cos265° - tan245°
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2