Advertisements
Advertisements
प्रश्न
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
उत्तर
R.H.S = `(sec^2"A")/("cosec"^2"A")`
= `(1 + tan^2"A")/(1 + cot^2"A")` .....`[(because 1 + tan^2"A" = sec^2"A"),(1 + cot^2"A" = "cosec"^2"A")]`
= `(1 + (sin^2"A")/(cos^2"A"))/(1 + (cos^2"A")/(sin^2"A"))`
= `((cos^2"A" + sin^2"A")/(cos^2"A"))/((sin^2"A" + cos^2"A")/(sin^2"A"))`
= `(1/(cos^2"A"))/(1/(sin^2"A"))` .......[∵ sin2A + cos2A = 1]
= `(sin^2"A")/(cos^2"A")`
= tan2A
= tan A . tan A
= `"tan A"/"cot A"`
= L.H.S
∴ `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find cosine of 9° 23’ + 15° 54’
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
The value of tan 72° tan 18° is
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
Sin 2B = 2 sin B is true when B is equal to ______.