Advertisements
Advertisements
प्रश्न
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
विकल्प
\[\frac{16}{625}\]
\[\frac{1}{36}\]
\[\frac{3}{160}\]
\[\frac{160}{3}\]
उत्तर
Given: cos θ = 3/5 and we need to find the value of the following expression` "sinθ tanθ-1"/"2tan^2 θ"`
We know that `cos θ = "Base"/"Hypotenuse"`
⇒`"Base"=3 `
⇒ `"Hypotenuse"=5`
⇒`" Perpendicular"= sqrt(("Hypotenuse")^2-("Base")^2)`
⇒ `"Perpendicular"= sqrt(25-9)`
⇒`"Perpendicular"=4`
`"Since" sin θ= "Perpendicular"/"Hypotenuse"`
and tan θ= `"Perpendicular"/"Base" `
So we find,
`(sin θ tan θ-1)/(2 tan^2 θ)`
`(4/5xx4/3-1)/(2xx(4/3)^2)`
`(16/15-1)/(32/9)`
`(1/15)/(32/9)`
`3/160`
Hence the correct option is (c78)
APPEARS IN
संबंधित प्रश्न
Evaluate cosec 31° − sec 59°
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find sine of 10° 20' + 20° 45'
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Prove that:
sin (28° + A) = cos (62° – A)
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Sin 2A = 2 sin A is true when A =
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If x and y are complementary angles, then ______.