हिंदी

Write all the other trigonometric ratios of ∠A in terms of sec A. - Mathematics

Advertisements
Advertisements

प्रश्न

Write all the other trigonometric ratios of ∠A in terms of sec A.

योग

उत्तर

(i) `sin A  = sin A /1`

= `(sin A ÷ cos A)/(1÷ cos A)`

= `(sin A/cosA)/(1/cosA)`

= `tan A/sec A`

= `sqrt( tan^2 A)/sec A`

= `sqrt(sec^2A-1)/(secA)`

(ii) `cos A =  1/(sec A)`

(iii) `tan A = sqrt(tan^2 A) = sqrt(sec^2 A-1)`

(iv) `cosec  A  = 1/sinA = secA/sqrt(sec^2A-1)`

(v) `cot A = (cos A)/(sin A)`

= `(1/(secA))/(sqrt(sec^2A-1)/secA)`

= `1/(sqrt(sec^2A-1))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.4 | Q 2 | पृष्ठ १९३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If the angle θ = -60° , find the value of sinθ .


Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


Evaluate `(tan 26^@)/(cot 64^@)`

 


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


Prove the following trigonometric identities.

(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ


if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


Solve.
`sec75/(cosec15)`


Solve.
sin42° sin48° - cos42° cos48°


Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`


Express the following in terms of angles between 0° and 45°:

cos74° + sec67°


Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°


Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°


Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°


Evaluate:

`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`


Use tables to find cosine of 8° 12’


Use tables to find the acute angle θ, if the value of sin θ is 0.6525


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0


Write the maximum and minimum values of cos θ.


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?


If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B


The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\] 


If angles A, B, C to a ∆ABC from an increasing AP, then sin B = 


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


If ∆ABC is right angled at C, then the value of cos (A + B) is ______.


Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°


Solve: 2cos2θ + sin θ - 2 = 0.


Find the value of the following:

tan 15° tan 30° tan 45° tan 60° tan 75°


Find the value of the following:

sin 21° 21′


If tan θ = cot 37°, then the value of θ is


`tan 47^circ/cot 43^circ` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×