Advertisements
Advertisements
प्रश्न
Write all the other trigonometric ratios of ∠A in terms of sec A.
उत्तर
(i) `sin A = sin A /1`
= `(sin A ÷ cos A)/(1÷ cos A)`
= `(sin A/cosA)/(1/cosA)`
= `tan A/sec A`
= `sqrt( tan^2 A)/sec A`
= `sqrt(sec^2A-1)/(secA)`
(ii) `cos A = 1/(sec A)`
(iii) `tan A = sqrt(tan^2 A) = sqrt(sec^2 A-1)`
(iv) `cosec A = 1/sinA = secA/sqrt(sec^2A-1)`
(v) `cot A = (cos A)/(sin A)`
= `(1/(secA))/(sqrt(sec^2A-1)/secA)`
= `1/(sqrt(sec^2A-1))`
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Evaluate `(tan 26^@)/(cot 64^@)`
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`sec75/(cosec15)`
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find cosine of 8° 12’
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
Write the maximum and minimum values of cos θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
The value of
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
Solve: 2cos2θ + sin θ - 2 = 0.
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
Find the value of the following:
sin 21° 21′
If tan θ = cot 37°, then the value of θ is
`tan 47^circ/cot 43^circ` = 1