English

If A and B are complementary angles, prove that: sinA+sinBsinA-sinB+cosB-cosAcosB+cosA=22sin2A-1 - Mathematics

Advertisements
Advertisements

Question

If A and B are complementary angles, prove that:

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`

Sum

Solution

Since, A and B are complementary angles, A + B = 90°

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA)`

= `(sinA + sinB)/(sinA - sinB) + (cos(90^@ - A) - cos(90^@ - B))/(cos(90^@ - A) + cos(90^@ - B))`

= `(sinA + sinB)/(sinA - sinB) + (sinA - sinB)/(sinA + sinB)`

= `((sinA + sinB)^2 + (sinA - sinB)^2)/((sinA - sinB)(sinA + sinB)`

= `(sin^2A + sin^2B + 2sinAsinB + sin^2A + sin^2B - 2sinA)/(sin^2A - sin^2B`

= `2(sin^2A + sin^2B)/(sin^2A - sin^2B)`

= `2(sin^2A + sin^2(90^@ - A))/(sin^2A - sin^2(90^@ - A))`

= `2(sin^2A + cos^2B)/(sin^2A - cos^2B)`

= `2/(sin^2A - (1 - sin^2A))`

= `2/(2sin^2A - 1)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (E) [Page 332]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (E) | Q 9.4 | Page 332
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×