Advertisements
Advertisements
Question
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
Solution
Since, A and B are complementary angles, A + B = 90°
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA)`
= `(sinA + sinB)/(sinA - sinB) + (cos(90^@ - A) - cos(90^@ - B))/(cos(90^@ - A) + cos(90^@ - B))`
= `(sinA + sinB)/(sinA - sinB) + (sinA - sinB)/(sinA + sinB)`
= `((sinA + sinB)^2 + (sinA - sinB)^2)/((sinA - sinB)(sinA + sinB)`
= `(sin^2A + sin^2B + 2sinAsinB + sin^2A + sin^2B - 2sinA)/(sin^2A - sin^2B`
= `2(sin^2A + sin^2B)/(sin^2A - sin^2B)`
= `2(sin^2A + sin^2(90^@ - A))/(sin^2A - sin^2(90^@ - A))`
= `2(sin^2A + cos^2B)/(sin^2A - cos^2B)`
= `2/(sin^2A - (1 - sin^2A))`
= `2/(2sin^2A - 1)`
APPEARS IN
RELATED QUESTIONS
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
`(sin 75^circ)/(cos 15^circ)` = ?