Advertisements
Advertisements
Question
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Solution
sin 42° sec 48° + cos 42° cosec 48° = 2
Consider sin 42° sec 48° + cos 42° cosec 48°
`=>` sin 42° sec (90° – 42°) + cos 42° cosec (90° – 42°)
`=>` sin 42° cosec 42° + cos 42° sec 42°
`=> sin 42^circ xx 1/(sin42^circ) + cos42^circ xx 1/(cos42^circ)`
`=>` 1 + 1 = 2
APPEARS IN
RELATED QUESTIONS
Use trigonometrical tables to find tangent of 37°
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Write the maximum and minimum values of sin θ.
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If cot( 90 – A ) = 1, then ∠A = ?