Advertisements
Advertisements
Question
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Solution
L.H.S. = `(sec A - 1)/(sec A + 1)`
= `(1/(cosA) - 1/1)/(1/(cosA) + 1/1`
= `((1 - cos A)/cos A)/((1 + cos A)/cos A)`
= `(1 - cos A)/cos A xx cos A/(1 + cos A)`
= `(1 - cosA)/(1 + cosA)`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?