English

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: θθ(cosecθ –cotθ)2=1-cosθ1+cosθ - Mathematics

Advertisements
Advertisements

Question

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`

Sum

Solution

L.H.S

= `(cosec  θ  – cot θ)^2`

= `(1/sintheta - costheta/sintheta)^2`

= `(1-costheta)^2/(sin^2 theta)`

= `(1-cos theta)^2/(1-cos^2theta)`

= `((1-costheta)(1-costheta))/((1-costheta)(1+cos theta)) `

= `(1-cos theta)/(1+costheta)`

= R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.4 [Page 193]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.01 | Page 193

RELATED QUESTIONS

Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following identities:

`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`


Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1


If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


Prove the following identity : 

`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.

Activity:

`5/(sin^2theta) - 5cot^2theta`

= `square (1/(sin^2theta) - cot^2theta)`

= `5(square - cot^2theta)   ......[1/(sin^2theta) = square]`

= 5(1)

= `square`


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


Prove that cot2θ × sec2θ = cot2θ + 1


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.


(1 – cos2 A) is equal to ______.


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×