Advertisements
Advertisements
Question
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Solution
L.H.S
= `(cosec θ – cot θ)^2`
= `(1/sintheta - costheta/sintheta)^2`
= `(1-costheta)^2/(sin^2 theta)`
= `(1-cos theta)^2/(1-cos^2theta)`
= `((1-costheta)(1-costheta))/((1-costheta)(1+cos theta)) `
= `(1-cos theta)/(1+costheta)`
= R.H.S
RELATED QUESTIONS
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that cot2θ × sec2θ = cot2θ + 1
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
(1 – cos2 A) is equal to ______.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`