English

Prove that cosθ1+sinθ=1-sinθcosθ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`

Sum

Solution

L.H.S = `costheta/(1 + sintheta)`

= `costheta/(1 + sintheta) xx (1 - sintheta)/(1 -  sintheta)`   ......[On rationalising the denominator]

= `(costheta(1 - sintheta))/(1 - sin^2theta)`

= `(costheta(1 - sintheta))/(cos^2theta)`    ......`[(because sin^2theta +cos^2theta = 1),(therefore 1 -sin^2theta = cos^2theta)]`

= `(1 - sintheta)/costheta`

= R.H.S

∴ `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.2 (B)

APPEARS IN

RELATED QUESTIONS

Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`

 


`(tan A + tanB )/(cot A + cot B) = tan A tan B`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Given that sin θ = `a/b`, then cos θ is equal to ______.


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×