Advertisements
Advertisements
Question
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Solution
L.H.S = `costheta/(1 + sintheta)`
= `costheta/(1 + sintheta) xx (1 - sintheta)/(1 - sintheta)` ......[On rationalising the denominator]
= `(costheta(1 - sintheta))/(1 - sin^2theta)`
= `(costheta(1 - sintheta))/(cos^2theta)` ......`[(because sin^2theta +cos^2theta = 1),(therefore 1 -sin^2theta = cos^2theta)]`
= `(1 - sintheta)/costheta`
= R.H.S
∴ `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Given that sin θ = `a/b`, then cos θ is equal to ______.
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`