English

Prove the Following Identities: 1/(Sin θ + Cos θ) + 1/(Sin θ - Cos θ) = (2sin θ)/(1 - 2 Cos^2 θ) - Mathematics

Advertisements
Advertisements

Question

Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.

Sum

Solution

LHS = `1/(sin θ + cos θ) + 1/(sin θ - cos θ)`

= `((sin θ - cos θ) + (sin θ + cos θ))/(sin^2 θ - cos^2 θ)`

= `(2 sin θ)/((1 - cos^2 θ) - cos^2 θ)`

= `(2 sin θ)/(1 - 2cos^2 θ)`

= RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 60.5
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×