Advertisements
Advertisements
Question
`(1+tan^2A)/(1+cot^2A)` = ______.
Options
sec2 A
−1
cot2 A
tan2 A
Solution
`(1+tan^2A)/(1+cot^2A)` = tan2 A.
Explanation:
`(1+tan^2A)/(1+cot^2A) = (1+(sin^2A)/cos^2A)/(1+(cos^2A)/(sin^2A))`
= `((cos^2A + sin^2A)/cos^2A)/((sin^2A + cos^2A)/sin^2A)`
= `(1/cos^2A)/(1/sin^2A)`
= `(sin^2A)/cos^2A`
= `tan^2A`
Hence, alternative tan2 A is correct.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
`(1 + cot^2 theta ) sin^2 theta =1`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If tanθ `= 3/4` then find the value of secθ.
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Find the value of ( sin2 33° + sin2 57°).
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
If tan θ × A = sin θ, then A = ?
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.