English

(secA + tanA) (1 − sinA) = ______. - Mathematics

Advertisements
Advertisements

Question

(secA + tanA) (1 − sinA) = ______.

Options

  • sec A

  • sin A

  • cosec A

  • cos A

MCQ
Fill in the Blanks

Solution

(secA + tanA) (1 − sinA) = cos A.

Explanation:

(secA + tanA) (1 − sinA)

= `(1/cosA+sinA/cosA)(1-sinA)`

= `((1+sinA)/cosA)(1-sinA)`

= `(1-sin^2A)/(cosA)`

= `(cos^2A)/cos A`

= cosA

Hence, alternative cosA is correct.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.4 [Page 193]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.4 | Q 4.3 | Page 193

RELATED QUESTIONS

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`


Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

(1 – tan A)2 + (1 + tan A)2 = 2 sec2A


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove the following identities:

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identities:

`1 - cos^2A/(1 + sinA) = sinA`


Show that : tan 10° tan 15° tan 75° tan 80° = 1


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A


Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`


If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


If  `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`


cos4 A − sin4 A is equal to ______.


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Find the value of ( sin2 33° + sin2 57°).


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


tan θ cosec2 θ – tan θ is equal to


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×