Advertisements
Advertisements
Question
(secA + tanA) (1 − sinA) = ______.
Options
sec A
sin A
cosec A
cos A
Solution
(secA + tanA) (1 − sinA) = cos A.
Explanation:
(secA + tanA) (1 − sinA)
= `(1/cosA+sinA/cosA)(1-sinA)`
= `((1+sinA)/cosA)(1-sinA)`
= `(1-sin^2A)/(cosA)`
= `(cos^2A)/cos A`
= cosA
Hence, alternative cosA is correct.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
cos4 A − sin4 A is equal to ______.
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Find the value of ( sin2 33° + sin2 57°).
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
tan θ cosec2 θ – tan θ is equal to
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ