English

If X = A Sec θ Cos ϕ, Y = B Sec θ Sin ϕ And Z = C Tan θ, Show that X^2/A^2 + Y^2/B^2 - X^2/C^2 = 1 - Mathematics

Advertisements
Advertisements

Question

If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`

Solution

Given:

`x = a sec theta cos phi`

`=> x/a = sec theta  cos phi`   ........(1)

`y = b sec theta sin phi`

`=> y/b = sec theta sin phi`

`=> y/b = sec theta sin phi`

`=> zx/c =  tan theta`

We have to prove that `x^2/a^2  + y^2/b^2 - z^2/c^2  = 1`

Squaring the above equations and then subtracting the third from the sum of the first two, we have

`(x/a)^2 + (y/b)^2  - (z/c)^2 = (sec theta cos phi)^2 + (sec theta sin phi)^2 - (tan theta)^2`

`=> x^2/ a^2 + y^2/b^2 - z^2/c62 = sec^2 theta cos^2 phi + sec^2 theta sin^2 phi - tan^2 theta` 

`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = (sec^2 theta cos^2 phi + sec^2 theta sin&2 phi) - tan^2 theta`

`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = sec^2 theta(cos^2 phi + sin^2 phi) - tan^2 theta`

`=> x^2/a^2 + y^2/b^2 - z^2/c^2= sec^2 theta (1) = tan^2 theta`

`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = sec^2 theta - tan^2 theta`

`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = 1`

Hence proved.

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 87 | Page 47

RELATED QUESTIONS

`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1


`sec theta (1- sin theta )( sec theta + tan theta )=1`


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×