Advertisements
Advertisements
Question
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Solution
Given:
`x = a sec theta cos phi`
`=> x/a = sec theta cos phi` ........(1)
`y = b sec theta sin phi`
`=> y/b = sec theta sin phi`
`=> y/b = sec theta sin phi`
`=> zx/c = tan theta`
We have to prove that `x^2/a^2 + y^2/b^2 - z^2/c^2 = 1`
Squaring the above equations and then subtracting the third from the sum of the first two, we have
`(x/a)^2 + (y/b)^2 - (z/c)^2 = (sec theta cos phi)^2 + (sec theta sin phi)^2 - (tan theta)^2`
`=> x^2/ a^2 + y^2/b^2 - z^2/c62 = sec^2 theta cos^2 phi + sec^2 theta sin^2 phi - tan^2 theta`
`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = (sec^2 theta cos^2 phi + sec^2 theta sin&2 phi) - tan^2 theta`
`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = sec^2 theta(cos^2 phi + sin^2 phi) - tan^2 theta`
`=> x^2/a^2 + y^2/b^2 - z^2/c^2= sec^2 theta (1) = tan^2 theta`
`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = sec^2 theta - tan^2 theta`
`=> x^2/a^2 + y^2/b^2 - z^2/c^2 = 1`
Hence proved.
APPEARS IN
RELATED QUESTIONS
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`sec theta (1- sin theta )( sec theta + tan theta )=1`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`