Advertisements
Advertisements
Question
`sec theta (1- sin theta )( sec theta + tan theta )=1`
Solution
LHS = `sec theta ( 1- sin theta )(sec theta + tan theta)`
=` (sec theta - sec theta sin theta) ( sec theta + tan theta)`
=` (sec theta - 1/(cos theta) xx sin theta )(sec theta+tantheta)`
=` (sec theta - tan theta ) ( sec theta + tan theta)`
= `sec ^2 theta - tan ^2 theta`
= 1
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
` tan^2 theta - 1/( cos^2 theta )=-1`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If `sec theta = x ,"write the value of tan" theta`.
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Find A if tan 2A = cot (A-24°).
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Evaluate:
`(tan 65°)/(cot 25°)`
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Given that sin θ = `a/b`, then cos θ is equal to ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ