Advertisements
Advertisements
Question
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Solution
Given x sin2 θ + y cos2 θ = sin θ cos θ
x sin θ = y cos θ ...(1)
x sin3 θ + y cos3 θ = sin θ cos θ
x sin θ (sin2 θ) + y cos θ (cos2 θ) = sin θ cos θ
x sin θ (sin2 θ) + x sin θ (cos2 θ) = sin θ cos θ
x sin θ (sin2 θ + cos2 θ) = sin θ cos θ
x sin θ = sin θ cos θ
x = cos θ
substitute x = cos θ in (1)
cos θ sin θ = y cos θ y = sin θ
L.H.S = x2 + y2 = cos2 θ + sin2 θ = 1
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
RELATED QUESTIONS
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If sec θ + tan θ = x, then sec θ =
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`