Advertisements
Advertisements
Question
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Solution
`3 cot^2 theta - 3 cosec ^2 theta`
= `3 ( cot^2 theta - cosec ^2 theta )`
= 3(-1)
=-3
APPEARS IN
RELATED QUESTIONS
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
\[\frac{x^2 - 1}{2x}\] is equal to
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Prove that cot2θ × sec2θ = cot2θ + 1
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If tan α + cot α = 2, then tan20α + cot20α = ______.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.