मराठी

1+tan2A1+cot2A = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`(1+tan^2A)/(1+cot^2A)` = ______.

पर्याय

  • secA

  • −1

  • cotA

  • tanA

MCQ
रिकाम्या जागा भरा

उत्तर

`(1+tan^2A)/(1+cot^2A)` = tanA.

Explanation:

`(1+tan^2A)/(1+cot^2A) = (1+(sin^2A)/cos^2A)/(1+(cos^2A)/(sin^2A))`

= `((cos^2A  +  sin^2A)/cos^2A)/((sin^2A  +  cos^2A)/sin^2A)`

= `(1/cos^2A)/(1/sin^2A)`

= `(sin^2A)/cos^2A`

= `tan^2A`

Hence, alternative tanA is correct. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.4 | Q 4.4 | पृष्ठ १९३

संबंधित प्रश्‍न

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`


`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


Prove that:

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


Find A if tan 2A = cot (A-24°).


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.


Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.


Prove the following identities.

sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×