हिंदी

1+tan2A1+cot2A = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`(1+tan^2A)/(1+cot^2A)` = ______.

विकल्प

  • secA

  • −1

  • cotA

  • tanA

MCQ
रिक्त स्थान भरें

उत्तर

`(1+tan^2A)/(1+cot^2A)` = tanA.

Explanation:

`(1+tan^2A)/(1+cot^2A) = (1+(sin^2A)/cos^2A)/(1+(cos^2A)/(sin^2A))`

= `((cos^2A  +  sin^2A)/cos^2A)/((sin^2A  +  cos^2A)/sin^2A)`

= `(1/cos^2A)/(1/sin^2A)`

= `(sin^2A)/cos^2A`

= `tan^2A`

Hence, alternative tanA is correct. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.4 | Q 4.4 | पृष्ठ १९३

संबंधित प्रश्न

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Show that one of the values of each member of this equality is sin α sin β sin γ


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove that:

2 sin2 A + cos4 A = 1 + sin4


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


cosec4θ − cosec2θ = cot4θ + cot2θ


If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


From the figure find the value of sinθ.


If tanθ `= 3/4` then find the value of secθ.


Simplify : 2 sin30 + 3 tan45.


\[\frac{x^2 - 1}{2x}\] is equal to 


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity :

`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Without using trigonometric table , evaluate : 

`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


Evaluate:
`(tan 65°)/(cot 25°)`


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


tan θ cosec2 θ – tan θ is equal to


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×