English

Prove the Following Identity : ( Sec θ − Tan θ ) 2 = 1 − Sin θ 1 + Sin θ - Mathematics

Advertisements
Advertisements

Question

Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`

Sum

Solution

`(secθ - tanθ)^2`

= `(1/cosθ - sinθ/cosθ)^2`

= `((1 - sinθ)/cosθ)^2 = (1 - sinθ)^2/cos^2θ`

= `(1 - sinθ)^2/(1 - sin^2θ) = (1 - sinθ)^2/((1 -sinθ)(1 + sinθ))`  (∵ `1 - sin^2θ = cos^2θ`

= `(1 - sinθ)/(1 + sinθ)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.1 | Q 5.01
ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 62.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×