Advertisements
Advertisements
Question
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Solution
`(secθ - tanθ)^2`
= `(1/cosθ - sinθ/cosθ)^2`
= `((1 - sinθ)/cosθ)^2 = (1 - sinθ)^2/cos^2θ`
= `(1 - sinθ)^2/(1 - sin^2θ) = (1 - sinθ)^2/((1 -sinθ)(1 + sinθ))` (∵ `1 - sin^2θ = cos^2θ`
= `(1 - sinθ)/(1 + sinθ)`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Choose the correct alternative:
cos θ. sec θ = ?
Prove that cot2θ × sec2θ = cot2θ + 1
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.