Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Solution
We have to prove `(tan A + tan B)/(cot A + cot B) = tan A tan B`
Now
`(tan A + tan B)/(cot A + cot B) = (tan A + tan B)/(1/tan A + 1/tanB)`
`= (tan A + tan B)/((tan B + tan A)/(tan A tan B))`
= tan A tan B
Hence proved.
APPEARS IN
RELATED QUESTIONS
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Given that sin θ = `a/b`, then cos θ is equal to ______.