English

Prove that 1+cosA1-cosA = cosec A + cot A - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A

Sum

Solution

L.H.S = `sqrt((1 + cos "A")/(1 - cos"A"))`

= `sqrt((1 + cos "A")/(1 - cos "A") xx (1 + cos "A")/(1 + cos "A"))`   ......[On rationalising the denominator]

= `sqrt((1 + cos "A")^2/(1 - cos^2 "A"))`

= `sqrt((1 + cos "A")^2/(sin^2 "A")`    ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`

= `(1 + cos"A")/"sin A"`

= `1/"sin A" + "cos A"/"sin A"`

= cosec A + cot A

= R.H.S

∴ `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.3 (B)

APPEARS IN

RELATED QUESTIONS

Prove that `cosA/(1+sinA) + tan A =  secA`


Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`


Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`


`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`


If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


sec4 A − sec2 A is equal to


If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


If tan θ × A = sin θ, then A = ?


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×