Advertisements
Advertisements
Question
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Solution
L.H.S. = `((1 + tan^2A)cotA)/(cosec^2A)`
= `(sec^2A cotA)/(cosec^2A` ...(∵ sec2 A = 1 + tan2 A)
= `(1/(cos^2A) xx (cosA)/(sinA))/(1/(sin^2A))`
= `(1/(cosA sinA))/(1/(sin^2A))`
= `sinA/cosA`
= tan A = R.H.S.
APPEARS IN
RELATED QUESTIONS
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`