English

Prove the Following Trigonometric Identities. If X = a Cos^3 Theta, Y = B Sin^3 Theta` " Prove that " `(X/A)^(2/3) + (Y/B)^(2/3) = 1 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`

Solution

Given:

`x = a cos^3 theta`

`=> x/a = cos^3 theta`

`x = b sin^3 theta`

`=> y/b = sin^3 theta`

We have to prove `(x/a)^(2/3) + (y/b)^(2/3) = 1`

We know that `sin^2 theta + cos^2 theta =1`

So we have

`(x/a)^(2/3) + (yb)^(2/3) = (cos^2 theta)^(2/3) + (sin^3 theta)^(2/3)`

`=> (x/a)^(2/3) + (y/b)^(2/3) = cos^2 theta + sin^2 theta` 

`=> (x/a)^(2/3) + (y/b)^(2/3) = 1`

Hence proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 78 | Page 47

RELATED QUESTIONS

If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following trigonometric identity.

`cos^2 A + 1/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2


`(sec^2 theta-1) cot ^2 theta=1`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


If cos θ = `24/25`, then sin θ = ?


Prove that sec2θ − cos2θ = tan2θ + sin2θ


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×