Advertisements
Advertisements
Question
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Solution
Given:
`x = a cos^3 theta`
`=> x/a = cos^3 theta`
`x = b sin^3 theta`
`=> y/b = sin^3 theta`
We have to prove `(x/a)^(2/3) + (y/b)^(2/3) = 1`
We know that `sin^2 theta + cos^2 theta =1`
So we have
`(x/a)^(2/3) + (yb)^(2/3) = (cos^2 theta)^(2/3) + (sin^3 theta)^(2/3)`
`=> (x/a)^(2/3) + (y/b)^(2/3) = cos^2 theta + sin^2 theta`
`=> (x/a)^(2/3) + (y/b)^(2/3) = 1`
Hence proved
APPEARS IN
RELATED QUESTIONS
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`(sec^2 theta-1) cot ^2 theta=1`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If cos θ = `24/25`, then sin θ = ?
Prove that sec2θ − cos2θ = tan2θ + sin2θ
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.