Advertisements
Advertisements
Question
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Solution
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
⇒ `cos90^circ + sin30^circ . sin45^circ/cos45^circ .cos^2 45^circ`
⇒ `cos90^circ + sin30^circ . sin45^circ . cos45^circ`
⇒ `0 + 1/2 . 1/2 = 1/4`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
If tan θ = `13/12`, then cot θ = ?