English

Define an Identity. - Mathematics

Advertisements
Advertisements

Question

Define an identity.

Answer in Brief

Solution

An identity is an equation which is true for all values of the variable (s).

For example,

 `(x+3)^2=x^2+6x+9`

Any number of variables may involve in an identity.

An example of an identity containing two variables is

 `(x+y)^2=x^2+2xy+y^2`

The above are all about algebraic identities. Now, we define the trigonometric identities.

An equation involving trigonometric ratios of an angle 0 (say) is said to be a trigonometric identity if it is satisfied for all valued of 0 for which the trigonometric ratios are defined.

For examples,

\[\sin^2 \theta + \cos^2 \theta = 1\]
\[1 + \tan^2 \theta = \sec^2 \theta\]
\[1 + \cot^2 \theta = {cosec}^2 \theta\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 1 | Page 55

RELATED QUESTIONS

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Choose the correct alternative:

sec2θ – tan2θ =?


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×