Advertisements
Advertisements
Question
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Solution
We have,
\[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]=` (-1(sec ^2 θ-tan ^2θ ))/(-1 (cosec^2 θ-cot ^2 θ))`
=`( secx^2θ-tan^2 θ)/ (cosec ^2 θ-cot^2 θ)`
We know that,
`sec^2θ-tan ^2θ=1`
` cosec^2 θ-cot ^2θ=1`
Therefore,
`(tan ^2θ-sec^2 θ)/(cot^2θ-cosec^2 θ)=1/1`
=1
APPEARS IN
RELATED QUESTIONS
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`