English

What is the Value of Tan 2 θ − Sec 2 θ Cot 2 θ − C O S E C 2 θ - Mathematics

Advertisements
Advertisements

Question

What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]

Sum

Solution

We have, 

\[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]=` (-1(sec ^2 θ-tan ^2θ ))/(-1 (cosec^2 θ-cot ^2 θ))` 

=`( secx^2θ-tan^2 θ)/ (cosec ^2 θ-cot^2 θ)` 

We know that, 

`sec^2θ-tan ^2θ=1` 

` cosec^2 θ-cot ^2θ=1`

Therefore, 

 `(tan ^2θ-sec^2 θ)/(cot^2θ-cosec^2 θ)=1/1`

=1

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 14 | Page 55

RELATED QUESTIONS

Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identities.

`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`


Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


Prove the following identities:

(1 – tan A)2 + (1 + tan A)2 = 2 sec2A


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


`sec theta (1- sin theta )( sec theta + tan theta )=1`


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


Choose the correct alternative:

sec2θ – tan2θ =?


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×