मराठी

Define an Identity. - Mathematics

Advertisements
Advertisements

प्रश्न

Define an identity.

थोडक्यात उत्तर

उत्तर

An identity is an equation which is true for all values of the variable (s).

For example,

 `(x+3)^2=x^2+6x+9`

Any number of variables may involve in an identity.

An example of an identity containing two variables is

 `(x+y)^2=x^2+2xy+y^2`

The above are all about algebraic identities. Now, we define the trigonometric identities.

An equation involving trigonometric ratios of an angle 0 (say) is said to be a trigonometric identity if it is satisfied for all valued of 0 for which the trigonometric ratios are defined.

For examples,

\[\sin^2 \theta + \cos^2 \theta = 1\]
\[1 + \tan^2 \theta = \sec^2 \theta\]
\[1 + \cot^2 \theta = {cosec}^2 \theta\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.3 | Q 1 | पृष्ठ ५५

संबंधित प्रश्‍न

Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


What is the value of (1 − cos2 θ) cosec2 θ? 


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


Prove the following identity : 

`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`


Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×