Advertisements
Advertisements
Question
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Options
m2 − n2
m2n2
n2 − m2
m2 + n2
Solution
Given:
`a cosθ+b sinθ= m,`
`a sinθ-b cos θ=n`
Squaring and adding these equations, we have
`(a cos θ+bsin θ)^2+(a sinθ-b cosθ)^2=(m)^2+(n)^2`
`⇒ (a^2 cos^2θ+b^2sin^2θ+2.a cosθ.bsinθ)+(a^2 sin^2θ+b^2 cos^2θ-2.a sin θ.bcosθ)=m^2+n^2`
`⇒ a^2 cos^2θ+b^2 sin^2θ+2ab sin θ cosθ+a^2 sin^2θ+b^2 cos^2θ-2ab sinθ cos θ=m^2+n^2`
`⇒a^2 cos^2θ+b^2 sin^2θ+a^2 sin^2θ+b^2 cos^2=m^2+n^2`
`⇒(a^2 cos^2θ+a^2 sin^2 θ)+(b^2 sin^2θ+b^2 cos^2θ)=m^2+n^2`
`⇒a^2 (cos^2θ+sin^2θ)+b^2(sin^2 θ+cos^2θ)=m^2+n^2`
`⇒ a^2(1)+b^2(1)=m^2+n^2`
`⇒ a^2+b^2=m^2+n^2`
APPEARS IN
RELATED QUESTIONS
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
cosec4θ − cosec2θ = cot4θ + cot2θ
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of cosec2 (90° − θ) − tan2 θ.
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.