Advertisements
Advertisements
प्रश्न
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
उत्तर
L.H.S = `sec"A"/(tan "A" + cot "A")`
= `sec"A"/((sin"A")/(cos"A") + (cos"A")/(sin"A"))`
= `sec"A"/((sin^2"A" + cos^2"A")/(cos"A" sin"A"))`
= `sec"A"/(1/(cos"A" sin"A"))` ......[∵ sin2A + cos2A = 1]
= sec A cos A sin A
= `1/cos"A" xx cos "A" sin "A"`
= sin A
= R.H.S.
∴ `sec"A"/(tan "A" + cot "A")` = sin A
संबंधित प्रश्न
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0