Advertisements
Advertisements
प्रश्न
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
विकल्प
9
7
5
3
उत्तर
7
Explanation;
(sin α + cos α)2 + (cos α + sec α)2
= sin2α + cosec2α + 2 sin α cosec α + cos2α + sec2α + 2 cos α sec α
= 1 + cosec2α + 2 + sec2α + 2
= 1 + cot2α + 1 + 2 + tan2α + 1 + 2
= 7 + tan2α + cot2α
k = 7
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
If `sec theta + tan theta = x," find the value of " sec theta`
Define an identity.
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`