Advertisements
Advertisements
प्रश्न
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
उत्तर
LHS = 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1
= 2( sin2θ + cos2θ ) [ sin4θ + cos4θ - sin2θ.cos2θ ] - 3[ ( sin2θ + cos2θ )2 - 2sin2θ. cos2θ + 1
= 2 x 1 [ ( sin2θ + cos2θ )2 - 2 sin2θ.cos2θ - sin2θ.cos2θ ] - 3[ (1)2 - 2sin2θ. cos2θ ] + 1
= 2 [ (1)2 - 3 sin2θ.cos2θ ] - 3 [ 1 - 2 sin2θ. cos2θ ] + 1
= 2 - 6 sin2θ. cos2θ - 3 + 6 sin2θ. cos2θ + 1
= - 1 + 1 = 0
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
From the figure find the value of sinθ.
Simplify : 2 sin30 + 3 tan45.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.