Advertisements
Advertisements
Question
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Solution
`cos^2theta + cos theta =1`
LHS = `cos^2 theta + cos theta`
=`1- sin^2 theta + cos theta `
=` 1- ( sin^2 theta - cos theta )`
Since LHS ≠ RHS, this not an identity.
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
\[\frac{x^2 - 1}{2x}\] is equal to
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
If 2sin2β − cos2β = 2, then β is ______.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?