Advertisements
Advertisements
Question
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
Solution
L.H.S = `(1 + sec theta - tan theta)/(1 + sec theta + tan theta)`
= `(1 + 1//cos theta - sin theta//cos theta)/(1 + 1//cos theta + sin theta//cos theta)` ...`[∵ sec theta = 1/cos theta and tan theta = sin theta/cos theta]`
= `(cos theta + 1 - sin theta)/(cos theta + 1 + sin theta)`
= `((cos theta + 1) - sin theta)/((cos theta + 1) + sin theta)`
= `(2 cos^2 theta/2 - 2 sin theta/2 * cos theta/2)/(2 cos^2 theta/2 + 2 sin theta/2 * cos theta/2)` ...`[∵ 1 + cos theta = 2 cos^2 theta/2 and sin theta = 2sin theta/2 cos theta/2]`
= `(2cos^2 theta/2 - 2 sin theta/2 * cos theta/2)/(2cos^2 theta/2 + 2sin theta/2 * cos theta/2)`
= `(2cos theta/2 (cos theta/2 - sin theta/2))/(2cos theta/2(cos theta/2 + sin theta/2))`
= `(cos theta/2 - sin theta/2)/(cos theta/2 + sin theta/2) xx ((cos theta/2 - sin theta/2))/((cos theta/2 - sin theta/2))` ...[By rationalisation]
= `(cos theta/2 - sin theta/2)^2/((cos^2 theta/2 - sin^2 theta/2))` ...[∵ (a – b)2 = a2 + b2 – 2ab and (a – b)(a + b) = (a2 – b2)]
= `((cos^2 theta/2 + sin^2 theta/2) - (2 sin theta/2 * cos theta/2))/cos theta` ...`[∵ cos^2 theta/2 - sin^2 theta/2 = cos theta]`
= `(1 - sin theta)/cos theta` ...`[∵ sin^2 theta/2 + cos^2 theta/2 = 1]`
= R.H.S
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
If sec θ + tan θ = x, then sec θ =
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
If cosθ = `5/13`, then find sinθ.
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.