Advertisements
Advertisements
प्रश्न
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
उत्तर
q(p2 – 1) = (sec A + cosec A) [(sin A + cos A)2 – 1]
= (sec A + cosec A) [(sin2 A + cos2 A + 2 sin A cos A) – 1]
= (sec A + cosec A) [(1 + 2 sin A cos A) – 1]
= (sec A + cosec A) (2 sin A cos A)
= 2 sin A + 2 cos A
= 2p
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Write the value of tan10° tan 20° tan 70° tan 80° .
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1