Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
L.H.S = \[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A\]
\[ = \sec^4 A - \sec^4 A \sin^4 A - 2 \tan^2 A\]
= `(sec^2"A")^2 - 1/(cos^4"A"). sin^4"A" - 2tan^2"A" ...[secθ = 1/cosθ]`
= `(1 + tan^2"A")^2 - (sin^4"A")/(cos^4"A") - 2 tan^2"A" ...[1 + tan^2θ = sec^2θ]`
= `1^2 + 2 xx 1 xx tan^2"A" + (tan^2"A")^2 - tan^4"A" - 2tan^2"A" ...[(a + b)^2 = a^2 + 2ab + b^2 tanθ = (sinθ)/(cosθ)]`
= `1 + cancel(2tan^2"A") + cancel(tan^4"A") - cancel(tan^4"A") - cancel(2tan^2"A")`
= 1
= R.H.S
APPEARS IN
संबंधित प्रश्न
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
cosec 45° =?
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Choose the correct alternative answer for the following question.
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Choose the correct alternative:
sinθ × cosecθ =?
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ