हिंदी

If Sinθ = 8/17, Where θ is an Acute Angle, Find the Value of Cos θ by Using Identities. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.

योग

उत्तर

Given: sinθ = `8/17`

We know that sin2θ + cos2θ = 1

 cos2θ = 1 - sin2θ

∴ cos θ = `sqrt(1 - sin^2θ)`

Using given

`cosθ = sqrt(1 - (8/17)^2) = sqrt(1 - 8^2/17^2)`

∴ cos θ = `sqrt((17^2 - 8^2)/17^2) = sqrt(289 - 64)/17`

∴ cos θ = `sqrt(225)/17 = 15/17`

∴ cos θ = `15/17`

shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (July)

APPEARS IN

संबंधित प्रश्न

If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tan​θ.


If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ


If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.


If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that:

\[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A = 1\]

Choose the correct alternative answer for the following question.
cosec 45° =?


Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following:

sec6x – tan6x = 1 + 3sec2x × tan2x


Prove the following.

\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]


Choose the correct alternative: 
sinθ × cosecθ =?


In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.


ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×