हिंदी

If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.

योग

उत्तर

5secθ - 12cosecθ = 0

⇒ 5secθ = 12cosecθ

⇒ `5xx1/cosθ=12xx1/sinθ`

⇒ `5/cosθ = 12/sinθ`

⇒ `sinθ/cosθ = 12/5`

⇒ tanθ = `12/5    ...[tanθ=sinθ/cosθ]`

We have,

sec2θ = 1 + tan2θ

⇒ sec2θ = 1 + `(12/5)^2`

⇒ sec2θ = 1 + `144/25`

⇒ sec2θ = `169/25`

Taking square root on both sides,

`sqrt(sec^2θ)=sqrt(169/25)`

∴ secθ = `13/5` 

Now,

cosθ = `1/secθ` 

⇒ cosθ = `1/(13/5)`

⇒ cosθ = `5/13`

Also,

`sinθ/cosθ` = tanθ

⇒ sinθ = tanθ × cosθ

⇒ sinθ = `12/5 xx 5/13 = 12/13`

Thus, the values of secθ, cosθ and sinθ are `13/5, 5/13 and 12/13` respectively.

shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Practice Set 6.1 [पृष्ठ १३१]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Practice Set 6.1 | Q 4 | पृष्ठ १३१

संबंधित प्रश्न

If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ


Prove that:

\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]

Prove that:

(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.


Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]


Prove that:

\[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A = 1\]

Choose the correct alternative answer for the following question.
cosec 45° =?


Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following.

secθ (1 – sinθ) (secθ + tanθ) = 1


Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following.

\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]


Choose the correct alternative: 
sinθ × cosecθ =?


If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.


ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×