हिंदी

ΔAmt∼δAhe, Construct δ Amt Such that Ma = 6.3 Cm, ∠Mat=120°, at = 4.9 Cm and "Ma"/"Ha"=7/5, Then Construct δAhe. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.

योग

उत्तर

Δ AMT and Δ AHE are give

⇒ `("MA")/("HA")= ("AT")/("AE") =("TM")/("EH")=7/5`

⇒ `("MA")/("HA")=7/5 ⇒ 6.3/"HA" =7/5`

⇒ `"HA" =(6.3xx5)/7`

 HA = 4.5cm

Similarly, `"AT"/"AE" =7/5`

⇒ `4.9/"AE" =7/5 ⇒"AE" =(4.9xx5)/7⇒"AE"=3.5`cm

Given triangle Required triangle

Steps of Constructing the required triangle:

1. Draw a line segment of some length HP and mark an arc of 4.5cm(as calculated above) and name it as A.

2. At vertex A, make an angle of 120°

3. Mark an arc of 3.5cm (as calculated above) on AT’ and name it E.

4. Join HE.

5. Δ AHE is the required triangle.

shaalaa.com
Application of Trigonometry
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (July)

APPEARS IN

संबंधित प्रश्न

If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ


If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


If tanθ = 1 then, find the value of

`(sinθ + cosθ)/(secθ + cosecθ)`


Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

Prove that:

\[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A = 1\]

Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following.

secθ (1 – sinθ) (secθ + tanθ) = 1


Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ


Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ 


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Prove the following:

sec6x – tan6x = 1 + 3sec2x × tan2x


Prove the following.

\[\frac{\tan^3 \theta - 1}{\tan\theta - 1} = \sec^2 \theta + \tan\theta\]

Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×