Advertisements
Advertisements
प्रश्न
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.
उत्तर
Δ AMT and Δ AHE are give
⇒ `("MA")/("HA")= ("AT")/("AE") =("TM")/("EH")=7/5`
⇒ `("MA")/("HA")=7/5 ⇒ 6.3/"HA" =7/5`
⇒ `"HA" =(6.3xx5)/7`
⇒ HA = 4.5cm
Similarly, `"AT"/"AE" =7/5`
⇒ `4.9/"AE" =7/5 ⇒"AE" =(4.9xx5)/7⇒"AE"=3.5`cm
Given triangle Required triangle
Steps of Constructing the required triangle:
1. Draw a line segment of some length HP and mark an arc of 4.5cm(as calculated above) and name it as A.
2. At vertex A, make an angle of 120°
3. Mark an arc of 3.5cm (as calculated above) on AT’ and name it E.
4. Join HE.
5. Δ AHE is the required triangle.
APPEARS IN
संबंधित प्रश्न
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
Prove that:
Choose the correct alternative answer for the following question.
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ
Prove the following.
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Prove the following.
Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ
Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)
= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`
= `((1 - square)/square) ((square + square)/(square square))`
= `square/square xx 1/(square square)` ......`[(∵ square + square = 1),(∴ square = 1 - square)]`
= `square/(square square)`
= tan θ.sec θ
= R.H.S.
∴ L.H.S. = R.H.S.
∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ