Advertisements
Advertisements
Question
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Solution
LHS = sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ )
= sec θ. sec θ - tan θ. tan θ
= sec2θ - tan2θ
= 1
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`(sec^2 theta-1) cot ^2 theta=1`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`