Advertisements
Advertisements
Question
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Solution
LHS = `(sin B + sec A)/sin A`
= `(sin (90 - A) + sec A)/sin A`
= `(cos A + sec A)/sin A`
= `(cos^2 A + 1)/(sin A. cos A)`
= `(2cos^2 A + sin^2 A)/(sin A. cos A)`
= 2cot A + tan A
= 2 tan B + tan A = RHS
hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Prove that cot2θ × sec2θ = cot2θ + 1