Advertisements
Advertisements
प्रश्न
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
उत्तर
L.H.S = `(cosec A - sin A)(secA - cosA)sec^2A`
`= (1/sinA - sinA)(1/cosA - cosA)(1/cos^2A)`
`= ((1 - sin^2A)/sin A)((1- cos^2A)/cos A)(1/(cos^2A))`
`= cos^2A/sinA . sin^2A/cos A . 1/cos^2A`
`= sinA/cosA`
= tan A
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)