Advertisements
Advertisements
Question
If x = a tan θ and y = b sec θ then
Options
`y^2/"b"^2 - x^2/"a"^2` = 1
`x^2/"a"^2 - y^2/"b"^2` = 1
`x^2/"a"^2 + y^2/"b"^2` = 1
`x^2/"a"^2 - y^2/"b"^2` = 0
Solution
`y^2/"b"^2 - x^2/"a"^2` = 1
Explanation;
Hint:
x = a tan θ
`x/"a"` = tan θ
`x^2/"a"^2` = tan2θ
`y^2/"b"^2 - x^2/"a"^2` = sec2θ – tan2θ = 1
y = b sec θ
`y/"b"` = sec θ
`y^2/"b"^2` = sec2θ
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ