Advertisements
Advertisements
Question
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Solution
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
LHS = `(cotA + cosecA - 1)/(cotA - cosecA + 1)`
we know that , cosec2A - cot2A = 1
substituting this in the numerator
`(cosecA + cotA - (cosec^2A - cot^2A))/(cotA - cosecA + 1)` .....(x²-y²= (x+y)(x-y))
`(cosecA + cotA - (cosecA + cotA)(cosecA - cotA))/(cotA - cosecA + 1)`
taking common
`((cosec A + cot A)(1-cosec A + cot A) )/ (cot A - cosec A + 1)`
cancelling like terms in numerator and denominator
we are left with cosec A + cot A
`= 1/sin A + cos A/sin A`
`= (1+cos A) / sin A`
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.