Advertisements
Advertisements
Question
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Solution
LHS = `sec^2A.cosec^2A = 1/(cos^2A.sin^2A)`
RHS = `tan^2A + cot^2A + 2 = tan^2A + cot^2A + 2tan^2A.cot^2A`
= `(tanA + cotA)^2 = (sinA/cosA + cosA/sinA)^2`
= `((sin^2A + cos^2A)/(sinA.cosA))^2 = 1/(cos^2A.sin^2A)`
= Hence , LHS = RHS
APPEARS IN
RELATED QUESTIONS
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
(sec A + tan A) (1 − sin A) = ______.
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0