English

Prove the Following Identity : Sec 2 a . Cos E C 2 a = Tan 2 a + Cot 2 a + 2 - Mathematics

Advertisements
Advertisements

Question

Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`

Sum

Solution

LHS = `sec^2A.cosec^2A = 1/(cos^2A.sin^2A)`

RHS = `tan^2A + cot^2A + 2 = tan^2A + cot^2A + 2tan^2A.cot^2A`

 = `(tanA + cotA)^2 = (sinA/cosA + cosA/sinA)^2`

 = `((sin^2A + cos^2A)/(sinA.cosA))^2 = 1/(cos^2A.sin^2A)`

= Hence , LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.1 | Q 2.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×